
How Long Do Vulnerabilities Live in the Code? A Large-Scale Empirical
Measurement Study on FOSS Vulnerability Lifetimes

Nikolaos Alexopoulos, Manuel Brack, Jan Philipp Wagner, Tim Grube and Max Mühlhäuser
Telecooperation Lab, Technical University of Darmstadt, Germany

Abstract
How long do vulnerabilities live in the repositories of large,
evolving projects? Although the question has been identified
as an interesting problem by the software community in on-
line forums, it has not been investigated yet in adequate depth
and scale, since the process of identifying the exact point in
time when a vulnerability was introduced is particularly cum-
bersome. In this paper, we provide an automatic approach
for accurately estimating how long vulnerabilities remain in
the code (their lifetimes). Our method relies on the observa-
tion that while it is difficult to pinpoint the exact point of
introduction for one vulnerability, it is possible to accurately
estimate the average lifetime of a large enough sample of
vulnerabilities, via a heuristic approach.

With our approach, we perform the first large-scale mea-
surement of Free and Open Source Software vulnerability
lifetimes, going beyond approaches estimating lower bounds
prevalent in previous research. We find that the average life-
time of a vulnerability is around 4 years, varying signifi-
cantly between projects (~2 years for Chromium, ~7 years for
OpenSSL). The distribution of lifetimes can be approximately
described by an exponential distribution. There are no statisti-
cally significant differences between the lifetimes of different
vulnerability types when considering specific projects. Vul-
nerabilities are getting older, as the average lifetime of fixed
vulnerabilities in a given year increases over time, influenced
by the overall increase of code age. However, they live less
than non-vulnerable code, with an increasing spread over time
for some projects, suggesting a notion of maturity that can be
considered an indicator of quality. While the introduction of
fuzzers does not significantly reduce the lifetimes of memory-
related vulnerabilities, further research is needed to better
understand and quantify the impact of fuzzers and other tools
on vulnerability lifetimes and on the security of codebases.

1 Introduction

Software flaws that can potentially be exploited by an ad-
versary are referred to as security bugs or vulnerabilities.

Reducing the number of vulnerabilities in software by find-
ing existing ones and avoiding the introduction of new ones
(e.g. by employing secure coding practices or formal verifica-
tion techniques) is one of the primary pursuits of computer
security.

Measurement studies on the different stages of the vul-
nerability lifecycle play an important role in this pursuit, as
they help us better understand the impact of security efforts
and improve software security practices and workflows. The
community has produced a number of such outputs in recent
years [5, 8, 14, 18, 23, 28, 36]. A vulnerability’s lifecycle, or
window of exposure as introduced by Schneier [34], describes
the phases between the introduction of a vulnerability in the
code, and the point in time when all systems affected by that
vulnerability have been patched. There have been several
adaptations of the vulnerability lifecycle concept (e.g. w.r.t.
the number of phases or their ordering and its non-linearity),
but the general concept remains the same, and a simple ver-
sion is shown in Fig 1. The lifecycle of a vulnerability (or

tint tf td tfix tp

vuln. in
tro

duced

vuln. fo
und

vuln. pub. disc
losed

fix 
available

all h
osts

 patch
ed

timePhase 1 Phase 2 Phase 3 Phase 4

Figure 1: Simplified plot of a vulnerability’s lifecycle. Continuous
line shows period of possible exploitation.

alternatively the window of exposure to a vulnerability) be-
gins with its introduction into a product (at time tint). This
first phase (Phase 1) of its lifecycle ends with its discovery
by some party (tf). Phase 2 covers the time period during
which a vulnerability is known to at least one individual (and
there is an associated risk of exploitation depending on their
intentions), but is not publicly disclosed yet. Phase 3 begins
with the public disclosure of the vulnerability (td) and ends



with the publication of a patch fixing the vulnerability (tfix).
Finally, Phase 4 ends when all vulnerable hosts have been
patched (tp). The phases described above can be long, short or
even non-existent, depending on the specific vulnerability and
the processes of the affected product’s vendor. For example,
if a vulnerability is discovered by an ethical hacker and re-
sponsibly disclosed, the software vendor has the opportunity
to eliminate Phase 3 by disclosing the vulnerability together
with the fix. This is common practice for many projects. In
some cases (more often for proprietary software) a vulner-
ability can be silently patched, meaning public disclosure
never occurs, and the phases may differ significantly from the
figure.

While the latter phases of the vulnerability lifecycle have
received renewed research attention [14, 23, 36], this has not
been the case for the early phases. A particularly interesting
quantity describing the early part of the lifecycle (Phases 1–3),
is the amount of time a vulnerability remains in the (upstream)
codebase of a project. In the context of a version control
system, it is the time between a Vulnerability Contributing
Commit (VCC), and a fixing commit. We refer to this quantity,
as a vulnerability’s code lifetime, or just lifetime for the rest
of this paper. This quantity can provide valuable insights
regarding code maturity, can guide practical decisions, and
can help us investigate fundamental questions: Is the quality
of software improving? How long should the “stable” freeze
last? Are some vulnerabilities harder to find than others?
What impact do automated testing tools have on the lifetimes
of vulnerabilities?

Previous approaches towards measuring vulnerability life-
times either relied on manual mappings of fixing commits to
VCCs [10, 11, 28], which meant they were limited in scale
(low number of vulnerabilities affecting one project), or used
heuristics to estimate lower bounds [18]. Li and Paxson [18],
in particular, provided lower bound estimates for vulnerability
lifetimes using an automated approach, as part of their large
scale study on security patches.
Research Questions. Although accurately estimating the life-
time of vulnerabilities is a useful contribution on its own, the
real power of a metric comes from the insights derived from
its application. Vulnerability lifetime, as a metric, is less af-
fected by the bias of vulnerability-hunting scrutiny, compared
to metrics based on counting the raw number of discovered
vulnerabilities1. Therefore, it can provide valuable novel in-
sights. The main research questions we set off to answer in
this paper are summarized by the following points:
– How long do vulnerabilities remain in the code? Do these
lifetimes differ for different projects or different vulnerabil-
ity types? How long does it take to find certain portions of
ultimately discovered vulnerabilities? (e.g. 25/50/75 percent)
Answering these questions will provide us with insights re-
garding the duration of the window of exposure for different

1The futility of software quality arguments based on the raw numbers of
vulnerability discoveries is well-documented [7, 17].

projects. Results can aid decisions regarding the amount of
time a “stable freeze” (only critical patches are applied to the
software) should last, and for how long investing on dedicated
long-term security support for a stable version may be neces-
sary.

– Are lifetimes increasing or decreasing over time? Are there
signs of improved quality? Answering these questions will
help us approach a fundamental question of software security
from a novel angle: is software getting more secure over time?
Contributions. We provide the first approach for accurately
estimating vulnerability lifetimes automatically, going beyond
estimating lower bounds, which is prevalent in previous work.
The approach is based on a heuristic that receives as input
a CVE’s set of fixing commits and produces as output an
estimate of the CVE’s lifetime, utilizing information available
in a project’s version control system. We rigorously validate
our approach on a dataset of 1,171 ground truth mappings
between CVEs and their VCCs. Then, we perform lifetime
measurements on a large dataset of 5,914 CVEs, spanning
11 popular Free and Open Source Software (FOSS) projects
(selection criteria for the projects are presented in Section 3.2).
This dataset is, to the best of our knowledge, the largest and
most complete dataset of mappings between CVEs and their
fixing commits, in existence.
Main findings. Vulnerabilities generally remain in the code
for large periods of time, varying significantly between
projects. An exponential distribution is a good fit for vulnera-
bility lifetimes overall, and for individual projects. Overall,
vulnerability lifetimes increase with time, however the shape
of their distribution remains exponential. A vulnerability’s
lifetime does not depend on its type. Lifetimes are closely
correlated with the general code age of a repository. However,
vulnerable code lives less than non-vulnerable code. This
spread (between the age of vulnerable and all code) increases
over time for some projects.

2 Related work and background

In this section, we place related work in context and define
vulnerability lifetime in version control systems.

2.1 Related work on vulnerability measure-
ments

There exists a considerable amount of work on measuring
different aspects of software security. These range from gen-
eral studies on bug characteristics [37], to studies on the vul-
nerability discovery rate and its trends in various software
projects [1,8,33]. Another strand of work focuses on vulnera-
bility discovery models that try to capture the vulnerability
discovery rate of specific software products after their release.
Most of these models try to model the after-release discovery
rate as a function of time [2–4, 15, 16], and others as a func-



tion of expended effort, either measured as the market share
of a specific product [3], or the cumulative user months esti-
mated to have elapsed since its release [40]. These reliability-
inspired discovery models most often focus on a specific ver-
sion of software (static codebase) and their accuracy against
empirical data has been contested [1, 26, 27]. Specifically,
empirical evidence [1, 33] suggest that there might be no de-
creasing trend in the rate of vulnerability discoveries, or if
there is, it may be attributed to a decrease in the detection
effort, rather than the depletion of vulnerabilities. Therefore,
the community has identified the need to measure different
aspects of the security process.

There are studies that measure the duration of different
parts of the vulnerability lifecycle (see Figure 1). Frei [14],
Krebs [17] and Shahzad et al. [36] measure characteristics
of Phase 3 of the vulnerability lifecycle, namely how fast
patches are developed and made available, and what the im-
pact of delays is in terms of real-world exploits. Phase 4 of
the lifecycle, namely how fast patches are applied to vulner-
able systems, and how this relates to attacks in the wild, is
studied by Nappa et al. [23]. Phase 2 of the lifecycle, namely
how long vulnerabilities remain undetected since they have
been discovered by attackers and used in zero-day attacks, is
studied by Bilge et al. [5].

The main topic of this paper, vulnerability lifetimes, i.e.
the amount of time vulnerabilities remain in the code in the
(upstream) repositories of non-static projects, has received at-
tention, but limited progress has been made to date. A reason
may be the difficulty of automatically assessing when a vul-
nerability was introduced in a codebase. In a short LWN.net
article, Corbet [11] presented the results of a small-scale study
on 80 CVEs affecting the Linux kernel. This was followed by
a blog post from Cook [10] on the amount of time 557 Linux
kernel CVEs remained in the code. Both of these studies re-
lied on manually curated data (either of the author or from the
Ubuntu Security Team) and only touched the surface of the
problem, being limited to providing one plot of the data. How-
ever, the interest they raised, expressed in lengthy discussions
in their respective forums, acted as a motivation for our work.
The only study that investigates the issue of vulnerability life-
times in a technical paper is, to the best of our knowledge,
the recent work by Li and Paxson [18]. A small part of their
insightful large-scale study on security patches in open source
software is dedicated to assessing a lower bound for vulner-
ability lifetimes. Using an approximation of the exact value
rather than a lower-bound approach, our results regarding vul-
nerability lifetimes differ by an order of magnitude compared
to theirs. Also, due to more detailed per-project analysis, our
conclusions do not support their hypothesis that vulnerability
lifetimes and their types are correlated. In our study, we focus
on how lifetimes differ between different projects and how
they develop over the years, questions that generated inter-
esting insights and have never been rigorously investigated
before.

2.2 Vulnerability lifetimes in version control
systems

A vulnerability’s code lifetime, or just lifetime for the rest of
this paper, has been informally defined as the amount of time
a vulnerability remains in the codebase. This is the time that
elapses between a change in the codebase that introduced
a weakness2, and the change in the codebase that fixed the
weakness (which was discovered in the meantime). In a ver-
sion control system, such as git, SVN, or mercurial, these
changes are part of commits. These commits include meta-
data about each change (e.g. commit timestamp, author) and
the complete history of a repository can be tracked via a tree-
like structure of commits (including branching and merging
commits). A commit that contributed to the introduction of
a weakness is known in literature [20, 31] as a Vulnerabil-
ity Contributing Commit (VCC), and a commit that helped
resolve the issue is referred to as a fixing commit. A vulner-
ability may have multiple VCCs and fixing commits due to
several reasons. Some examples follow:

– a CVE may cover multiple programming errors. For ex-
ample, CVE-2019-10207 describes a flaw in the bluetooth
drivers of the Linux kernel. The fixing commit3 indicates that
checks were missing in the bluetooth driver files of several
manufacturers, pinpointing 5 responsible VCCs with commit
dates spanning 8 years. Another example is CVE-2015-8550,
which describes flaws in 2 linux kernel virtualization drivers
(Xen blktap and Xen PVSCSI), introduced in 2013 and 2014
respectively, and fixed with a patch spread among 7 commits
all with the same commit date in 20154.

– a vulnerability may be removed and then re-introduced. For
example CVE-2017-18174 describes a double free in the
Linux kernel that was introduced in 2015, removed without
being designated as a security issue roughly a year later as
part of a commit that “cleaned the error path”, re-introduced
by a commit that provided new functionality 6 months later,
and finally fixed again within a month of re-introduction5.

– a fix may be extensive, requiring multiple commits. For
example the fix of CVE-2017-9059 included considerable
refactoring of the code and changes spanned 2 fixing commits

2What constitutes a weakness is open to definition and often also to
discussion among project contributors/developers. In the empirical part of
this paper, we count vulnerabilities by their CVE identifier in the NVD,
as often done in literature. We note that the CVE identifier is a level of
abstraction higher than individual weaknesses, in the sense that multiple
related weaknesses may be grouped together under a unique CVE identifier.
However, for the sake of text simplicity, for the rest of the paper, we do no
differentiate between the concepts (1 CVE-ID = 1 vulnerability).

3https://github.com/torvalds/linux/commit/
b36a1552d7319bbfd5cf7f08726c23c5c66d4f73

4more information at https://bugs.launchpad.net/ubuntu/
+source/linux/+bug/1530403.

5more information at https://bugzilla.redhat.com/show_bug.
cgi?id=1544482.

https://github.com/torvalds/linux/commit/b36a1552d7319bbfd5cf7f08726c23c5c66d4f73
https://github.com/torvalds/linux/commit/b36a1552d7319bbfd5cf7f08726c23c5c66d4f73
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1530403
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1530403
https://bugzilla.redhat.com/show_bug.cgi?id=1544482
https://bugzilla.redhat.com/show_bug.cgi?id=1544482


committed within a day6. Another Linux kernel vulnerability
with CVE-2012-2119, this time a buffer overflow, had a patch
spanning 5 short fixing commits modifying the same file, all
committed on the same day7.

Defining a lifetime metric comes down to explicitly defin-
ing the start and end points of the time measurement.
– Which of the potentially multiple VCCs/fixing commits
should we consider as a start/end point? Considering the
causes for multiple commits either introducing or fixing a vul-
nerability, we decide to use the first of the VCCs as the start
of the time measurement and the last of the fixing commits as
the end. For cases like the first example concerning multiple
sub-vulnerabilities described in one CVE, we therefore mea-
sure the lifetime of the oldest one. For re-introduction cases,
like the one in the second example, we measure the total life-
time. In those cases, this whole period is most often a period
of risk for systems running “stable” software versions (only
applying critical patches), since the premature fix is often not
designated as a security issue, and therefore not considered a
critical patch.
– Which timestamp to use? Most projects use a “main”
branch of development (traditionally master in git) to track
their code, and have a public mirror of this repository so that
users can download the most recent versions of the code8.
Changes are then developed, discussed, and tested in private
copies of the repository. When a change is ready to make it to
the main branch, it is either (a) prepared as a (typically short)
series of commits based on a recent reference commit and
then merged into the main branch, or (b) directly committed to
the main branch. For the purpose of measuring the lifetime of
a vulnerability as a part of its window of exposure, we would
want to measure the time between the VCC and the fix being
widely available to users (including, e.g. maintainers of soft-
ware distributions). Following this argumentation, we would
use the time a VCC or a fixing commit was merged into the
main branch as its timestamp, rather than its “commit times-
tamp” (because the change may potentially be kept private
until merging). This was indeed our first approach. However,
from our empirical results we came to the conclusion that
this adds unnecessary complexity to both the definition and
the computation of the metric. The time between the commit
and its merging into the main branch is usually very short
(average of ∼20 days) in comparison to the lifetime of a vul-
nerability (average in years). This is due to the fact that the
usual practice after a fix is prepared and tested, is to download
the most recent version of the code from the main branch
of development and create a patch against this version. Fur-
thermore, more complexity in the definition would have been

6more information at https://www.spinics.net/lists/linux-nfs/
msg63334.html.

7more information at https://bugs.launchpad.net/ubuntu/
+source/linux/+bug/987566.

8see https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git for Linux.

needed to account for fixes that were never merged into the
main branch because the vulnerability they addressed only
affected older versions of the software (and were therefore
merged into e.g. a stable branch). Considering the above, we
backtracked and decided to use the commit timestamp, which
is readily available in the metadata of a commit in all three
popular version control systems (git, SVN, mercurial).

3 Dataset creation

In this section we describe the data collection and cleaning
process. This process allowed us to create the largest and
most complete, to the best of our knowledge, datasets of (a)
mappings between a CVE and its VCC(s), and (b) mappings
between a CVE and its fixing commit(s). We therefore con-
sider the dataset to be a valuable contribution in itself and
will make it publicly available for other researchers to use9.

3.1 Linking CVEs to their VCCs
An integral part of our dataset are mappings from CVEs to
their VCCs to create a “ground truth” dataset. These map-
pings come from manually curated datasets of researchers
and project maintainers and enable us to evaluate and validate
methods that automatically estimate lifetimes of vulnerabili-
ties for which no such ground truth data are available.

The largest source we identified for such mappings, is the
Ubuntu CVE Tracker [6]. In this project, the Ubuntu Security
Team gathers and curates several data points on vulnerabilities
affecting the Linux kernel, often including their fixing com-
mits and VCCs. Note that we exclude some of the mappings
in the project from our dataset as their corresponding VCC
refers to the initial git commit of the Linux kernel, leaving us
with 1,202 mappings between 885 CVEs and their VCCs. Our
reasoning is that vulnerabilities found in this commit were
introduced before the beginning of the git era and thus using
the timestamp of the initial git commit would let their lifetime
appear shorter than it actually is.

Additionally, we found 436 ground truth mappings for
Chromium10 (226 CVEs), and 163 for the Apache HTTP
Server (httpd) (60 CVEs) in the Vulnerability History
Project [21]. The project also contains a few additional data
points for repositories, other than Chromium and httpd, how-
ever these repositories do not use C/C++ as their main pro-
gramming language. Since the quantity of those mappings
for other programming languages was too low to validate the
accuracy of our methodology on them, we decided to limit
our dataset to C/C++ repositories. Overall we were able to
map 1,171 CVEs to one or more VCCs, from high-quality
sources.

9dataset available at https://figshare.com/s/
4dd1130c336f43f6e18c

10Chromium is a web browser on its own right, but its codebase is also
used as a basis for Google Chrome, as well as other web browsers.

https://www.spinics.net/lists/linux-nfs/msg63334.html
https://www.spinics.net/lists/linux-nfs/msg63334.html
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/987566
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/987566
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://figshare.com/s/4dd1130c336f43f6e18c
https://figshare.com/s/4dd1130c336f43f6e18c


3.2 Included projects
For our analysis, we want a large representative sample of
FOSS projects that are compatible with our ground truth
datasets and provide enough data points for our analysis. As
starting point, we established the following requirements for
software projects to be included:
(a) The project should be free and/or open source with trans-
parent and consistent security workflows. In fact, all projects
that were included at the end of this process are distributed
under Debian11 as free software. Nonetheless, they are widely
used in other operating systems and make up a good represen-
tation of FOSS in general.
(b) The project should have a considerable number of reported
CVEs. In order to allow a thorough analysis of all projects,
we limited ourselves to those with at least 100 CVEs to en-
sure meaningful results (we expect statistical arguments to be
possible). This condition forced us to discard many projects
we considered interesting, simply because they did not have
enough data available in the National Vulnerability Database
(NVD).
(c) The project should be mainly written in C or C++. Intu-
ition suggests that our methodology would provide results of
similar quality for other programming languages with similar
syntax and semantics, such as Java. However, we did not have
enough ground truth data available to empirically prove this
hypothesis for other programming languages, and therefore
focus on C/C++.
(d) Lastly, we require a significant number of a project’s CVEs
to be linkable to a fixing commit. We had to discard some
projects because it was not possible to consistently identify
the fixing commit(s) for the project’s CVEs.

In the end we created a dataset consisting of 11 different
projects of various sizes, ages and areas of application. All
included projects and their respective numbers of CVEs and
corresponding fixing commits are listed in Table 1. We thor-
oughly investigated commit messages, bug tracking systems
and NVD references to ensure the highest possible – to the
best of our efforts – yield of vulnerability mappings. A general
description of the process follows in the next section.

3.3 Linking CVEs to their fixing commits
Our data collection process is based on information from the
NVD [25]. The NVD is manually curated and represents one
of the largest collections of software vulnerabilities. Conse-
quently, it is frequently used in research on software security,
having generated valuable insights on various topics. At the
same time, the NVD has some well-known pitfalls, that the
process described below tries to mitigate. This issue is fur-
ther discussed in Section 7. For our work, we relied on the
CVE-search tool [13] to obtain a local copy of the NVD for
querying and obtaining data.

11https://www.debian.org/

For our analysis of vulnerability lifetimes, we needed to
link a vulnerability entry in the NVD to one or multiple fixing
commits resolving the underlying flaw. In order to create as
large a dataset as we could for our evaluation, we applied and
combined four different approaches.
1. CVE-ID in Commit Message. Some fixing commits men-
tion the related CVE-ID in the commit message, establishing
a link between CVE and fixing commit. We investigated all
these mappings using a combination of automated scripts and
manual effort. First, we deemed correct all mappings that
mention the CVE-ID in a project-specific syntax (e.g Bug-Id:
CVE-2017-9992) that clearly denotes a matching CVE. We
manually analyzed the remaining 176 mappings, and removed
17 unjustified mappings, corrected 2, and added 212.
2. Commit in NVD Reference. Entries in the NVD often
contain references to third party websites that include security
advisories, bug tracking systems, and also links to commits
in a project’s version control system. In the cases where a
reference to a commit in the respective repository was in-
cluded, we considered this commit to be a fixing commit. We
manually validated the mappings obtained using this method
by investigating a random subset of 50 samples. We found
that all of the sampled commits were indeed fixes for the re-
spective CVEs.
3. Common Bug ID. Many software vendors use dedicated
bug tracking systems in their development process. Each com-
mit corresponds to a bug identifier that is denoted in the com-
mit message using a particular syntax. Thus, most commits
can be linked to a certain bug ID. NVD entries, on the other
hand, may contain a link to the vendor’s online bug tracking
system in their references. Using regular expressions, the bug
ID can be extracted from such links and then matched to corre-
sponding commits. We assume that the developers mentioned
the correct bug identifiers in their commit messages and the
curators of the NVD reference the correct bugs as well. We
recognize that this is a potential threat to the correctness of
these mappings (see Section 7), but are confident the errors
are negligible.
4. Third party mappings. As the information provided by
linking vulnerabilities and fixing commits is useful for var-
ious purposes, fellow researchers and security experts have
collected similar data for some software projects. In addition
to our own analysis, we incorporated this data, especially in
cases where acquiring the information in an automated fash-
ion proved particularly difficult. We relied on three different
third party mappings: (a) data provided by the Linux Kernel
CVEs project [19], (b) mappings that were manually curated
by Piantadosi et al. [32], (c) information from the Debian
Security Tracker [12]. We are confident in the quality of data
obtained from these parties, as they are either curated from
reliable sources or relied on a data collection methodology
similar to ours.

12There were two occasions where a fix belonged to multiple CVEs as
indicated in the commit message

https://www.debian.org/


These efforts resulted in a dataset of 5,914 CVEs across 11
projects that can be linked to one or more fixing commits. The
corresponding numbers of CVEs as well as the resulting num-
ber of mappings from this process are listed in Table 1. CVEs
with associated fixing commits are a subset of all of the CVEs
in the NVD. For the calculation of vulnerability lifetime we
could only consider those CVEs, where an associated fixing
commit could be identified in the code repository. Rather
than being a limitation of the approach, this addresses an im-
portant problem with the NVD regarding the reliability of
information on vulnerable products and versions (highlighted
in previous research [23,24]). Contrary to Li and Paxson [18]

Project CVEs w/ fix. com. # fix. com.
Linux (kernel) 4,302 1,473 1,528
Firefox 2,179 1,498 3,751
Chromium 2,781 1, 580 2,820
Wireshark 600 314 343
Php 663 281 932
Ffmpeg 326 277 373
Openssl 214 144 259
Httpd 248 132 476
Tcpdump 167 115 128
Qemu 340 213 290
Postgres 139 76 141
Total 11,959 5,914 11,041

Table 1: Number of CVEs and mappings per project. First column
gives the total number of CVEs returned from a search of the NVD.
Second column gives the number of those CVEs for which at least
one fixing commit was found in the project repository. Third column
gives the total number of fixing commits found per project.

we focused our efforts on a smaller set of projects with a
significant number of NVD entries available. We dedicated
considerable efforts towards achieving the highest mapping
rate that we could for these projects. In order to do that we
made sure to identify all potential syntaxes for denoting bug
IDs, all websites and corresponding hyperlinks belonging to
the same bug tracking system as well as combining multiple
of the introduced techniques. Consequently, we believe our
dataset to be the most complete mapping for the included
projects. Additionally, we also consider it to be more diverse
than the one used in Li and Paxson’s work, as over 40% of
their data originates from the Linux kernel or an operating
system based on it.

4 Lifetime estimation

In this section, we describe our methodology for automated
lifetime estimation from vulnerability fixing commits. We
start off by evaluating a lower-bound approach used in previ-
ous work [18]. To the best of our knowledge, we are the first

to evaluate this approach against ground truth data.

4.1 Lifetime estimation in previous work
Calculating the lifetime of a vulnerability is a non-trivial task,
as finding VCCs can be very difficult [20]. One approach used
before is manually identifying VCCs via thorough analysis of
the fixing commits of a vulnerability [28]. While this method
likely yields the most accurate results, it is unsuitable for
large scale studies. Therefore, Li and Paxson [18] opted for
an automated approach to the problem. They approximated
a lower bound of a vulnerability’s lifetime by using the git
blame command. Git blame finds which commit last changed
a specific line in a given file, and so can be used to trace a vul-
nerability back to its origin. Li and Paxson’s approach was to
run the command on every deleted or modified line of a given
fixing commit; this process usually returns multiple candidate
VCCs. They then picked the most recent of the commit dates
of those VCCs as their vulnerability introduction date, going
for a lower bound approach.

Although our empirical evaluation showed that this ap-
proach is indeed correct for getting a lower bound on the
lifetime of a vulnerability, we found it too conservative for
our needs. To be precise, we found that it underestimates the
average lifetime for vulnerabilities in our ground truth dataset
by 346.88 days. Due to the large underestimation of average
lifetime, we deem this approach unsuitable for our study.

A heuristic similar to Li and Paxson’s was used by Perl et
al. in VCCFinder [31], albeit for a different goal. Their git
blame-based heuristic aims to pinpoint the exact VCC, with
the goal of creating a dataset suitable for training a classifier
that can flag risky commits. Contrary to the Li and Paxson
approach (that only blames lines that were deleted or modified
in the fixing commit), the VCCFinder heuristic also takes into
account lines added by the fixing commit. The commit that is
blamed the most often is then marked as the VCC.

In VCCFinder, the accuracy of the heuristic is calculated
at 96%. This figure was derived by the authors by taking a
15% sample of VCCs (96 in total) that the heuristic identi-
fied, and manually checking them. Naturally, simply applying
this heuristic seemed like a good fit for our use-case. Un-
fortunately, in our evaluation of the heuristic against ground
truth data, we could not observe similar accuracy (accuracy
~40%). We attribute the optimistic evaluation of the heuristic
by Perl et al. to the difficulty of pinpointing VCCs manually.
Our results seem sensible considering the fact that software
developers put a significant amount of manual effort13 into
regression tracking which includes identifying VCCs. Thus,
it seems likely that the accuracy of a relatively simple heuris-
tic like this, is limited. However, for the purpose of training
a classifier that pinpoints “risky” commits, with the aim to

13https://lore.kernel.org/lkml/3519198.TemPj1OATJ@vostro.
rjw.lan/
https://yarchive.net/comp/linux/regression_tracking.html

https://lore.kernel.org/lkml/3519198.TemPj1OATJ@vostro.rjw.lan/
https://lore.kernel.org/lkml/3519198.TemPj1OATJ@vostro.rjw.lan/
https://yarchive.net/comp/linux/regression_tracking.html


drastically reduce the search space for subsequent manual
auditing, such accuracy is perfectly acceptable. Indeed, the
authors of VCCFinder showed that it is successful in find-
ing previously unflagged vulnerabilities and outperformed
existing approaches.

4.2 Our approach

A key observation is that we do not need to pinpoint the exact
VCCs for our purposes. It is sufficient to approximate the
point in time when a vulnerability was introduced. We found
that we can estimate this the closest by repurposing the VC-
CFinder heuristic with some slight modifications (similar to
the ones by Yang et al. [41]). We modify the heuristic in such
a way that it returns an approximation (in days) of how long
the code was vulnerable instead of the exact VCC. This is
done by averaging multiple possible dates when the vulner-
ability could have been introduced, and assigning different
weights corresponding to how often each individual commit
was blamed. Our approach is as follows:
1) We use git blame -w14 to map every “interesting” change
of a fixing commit to potential VCCs:
– Ignore changes to tests, comments, empty lines and non
C/C++ files.
– Blame every line that was removed.
– Blame before and after every added block of code (two or
more lines) if it is not a function definition as these can be
inserted arbitrarily.
– Blame before and after each single line the fixing commit
added if it contains at least one of these keywords ("if", "else",
"goto", "return", "sizeof", "break", "NULL") or is a function
call. This approach was shown to perform well in blaming
actual VCCs by Yang et al. [41].
2) We then calculate our estimated introduction date dh from
the list of blamed commits. For n commits we have:

dh = dre f +
1

∑
n
i=1 bi

n

∑
i=1

bi(di −dre f ) (1)

where bi is determined by the number of blames the commit
i received and di is the respective commit date. For easier
calculation, the dates are represented as difference in days to
a static reference date dre f (January 1, 1900).

Using this heuristic, we decrease the mean error on our
ground truth set by 66% compared to using the lower-bound
blaming heuristic of Li & Paxson, effectively overestimat-
ing the actual average lifetime by 117 days (see Table 2).
However, having a low error on the ground truth dataset does
not necessarily mean that the approach is suitable for our
needs. We have to address some additional important points
regarding the robustness of the approach.

14All projects that we investigated either used git or offered a git mirror of
their repositories. However, the approach is generalizable, as other version
control systems offer similar commands (e.g. svn blame or hg annotate).

−2000 −1500 −1000 −500 0 500 1000 1500 2000
Heuristic error (days)

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

De
ns

ity

Figure 2: Distribution of heuristic errors in days (excluding data
points with no error for readability). Equally sized bins.

How many data points are needed? A standard deviation
of more than 900 days means that individual measurements
are generally not reliable. Therefore, we need to rely on mea-
surements of the mean over larger sample sizes. Treating the
errors as independent random variables sampled from the
error distribution of Figure 2, we can compute the standard
deviation of the sample mean for a given sample size with the
Bienaymé formula. According to the Central Limit Theorem,
the distribution of the sample mean will be normal for a large
enough number of samples. We empirically conclude that
at least for 20 or more samples, this holds for the distribu-
tion of the errors. Therefore, we can compute bounds for the
sample mean using normal distribution tables. For example,
for a sample size of 20 and a confidence level of 95%, the
sample mean will lie in the interval [117-395, 117+395] days.
Making the simplification that the mean error is 0 (necessary
for generalization), we can say that for a confidence level of
95%, the margin of error will be ±395 days for 20 samples,
±250 days for 50 samples, and ±176 days for 100 samples
(compared to an average lifetime of almost 1150 days, cal-
culated from the ground truth data). We consider the margin
of error for 20 samples as the maximum tolerable error for
our study, and set the minimum number of data points for a
measurement to 20. We, therefore study means of at least 20
CVE samples, although for most of our analysis (e.g. average
lifetimes per project, vulnerability types), we consider means
of 60 or more samples. Note that the calculations above are
approximate and their aim is to get a lower bound for the
number of samples required for meaningful estimation.

Does the weighted average heuristic generalize (over time
and between projects)? Although we have a limited number
of data points in our ground truth dataset, we can see that the
performance of our heuristic is similar for the three different
projects (see Table 2). Another source of confidence in the
robustness of our heuristic is that its error is symmetrically
(nearly normally) distributed around a low mean value (that
can be assumed to be zero), as can be seen in Figure 2. In-



Project CVEs Li & Paxson our approach (VCCFinder) our approach (w. average) Lifetime
Mean error St. dev Mean error St. dev Mean error St. dev Mean

Linux (kernel) 885 -323.74 1,033.27 157.51 1,127.60 163.11 994.01 1,330.85
Chromium 226 -370.32 747.51 -15.54 754.19 -38.44 633.45 754.22
Httpd 60 -599.80 1,160.05 257.45 915.81 22.40 868.91 1,890.23
All CVEs 1,171 -346.88 993.72 129.24 1,057.9 117.00 932.52 1,248.22

Table 2: Comparison of heuristic performance for the lower-bound approach of Li&Paxson, our approach based on a repurposed version of the
VCCFinder heuristic [31], and our optimized heuristic (weighted average). All against ground truth data and measured in days.

tuitively, this means that the errors “automatically” cancel
out. For example, an alternative approach to have more ac-
curate estimations of the lifetime would be to find a suitable
“perfect constant” to add to the lower bound estimation as
computed by the Li & Paxson approach. However, we found
that depending on the data sampled, a perfect constant gen-
erally performs worse than our weighted average approach.
Taking Chromium as an example, calculating a constant up
to some date X and then adding it to the output of the lower
bound estimation approach, does not provide a good estimate
compared to the weighted average heuristic. For example, as-
sume the available data for Chromium is split into two subsets
with fixing commits before 2014, and with fixing commits
in 2014 and after. Calculating a perfect constant on the first
dataset and applying it to the second, results in an average
underestimation of 228.58 days, while the weighted average
heuristic underestimates the correct lifetime by 33.56 days.
Also, the calculated constants between the Linux kernel and
Chromium differ drastically (the kernel constant would be up
to 6 times larger), which shows that this approach cannot be
transferred between different projects, whereas our approach
does not require tuning and provides good results for all three
projects with ground truth data that are available.

Can we use the heuristic to assess trends and distri-
butions? Figure 3 shows the (ground truth) lifetimes of
Linux kernel15 vulnerabilities in our ground truth dataset (867
CVEs), per year from 2011 to 2020. For the same CVEs, it
also shows the estimate by our weighted average heuristic, in
addition to the best linear fits for the trend in each case. Visual
inspection of the plot as well as the relatively small difference
in the calculated best linear fits (gradient of 163 days/year
for heuristic, 155 days/year for ground truth) supports the as-
sertion that the heuristic can be used to study lifetime trends
over time.

To assess whether the heuristic is also suitable for estimat-
ing the distribution of vulnerability lifetimes, we plot and
compare the histograms of the ground truth data and the out-
put of the heuristic for the same CVEs (Figure 4). The his-
tograms showcase similar characteristics and the exponential

15We use the Linux kernel for this investigation, since it is the project with
the most data points in our ground truth dataset (see Table 2). However, the
same conclusion can be made by using the ground truth data for Chromium.

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
year of fixing commit

0

500

1000

1500

2000

2500

lif
et

im
e 

in
 d

ay
s

Heuristic Lifetime
Groundtruth lifetime

Figure 3: Comparison of heuristic vs ground truth values for historic
trend of vulnerability lifetimes in the linux kernel. Linear OLS fit.

distribution appears to be a good fit to both the heuristic and
ground truth data for most of the data range (see Q-Q plots in
Figure 4). Overall, our experiments support the assertion that
the heuristic can be used to study the distribution of lifetimes.

5 Results

In this section, we present the results of applying our weighted
average heuristic for lifetime estimation on a large dataset of
5,914 CVEs with available fixing commits16. For 1,171 of
those data points we use ground truth data, and for the rest
we use the approach described in Section 4 to approximate
their lifetimes.

5.1 General
Table 3 shows an overview of the computed lifetimes for each
project, as well as for the dataset as a whole. In general, vul-
nerabilities live in the code for long periods of time (over
1,900 days on average). This fact has also been indicated by
previous research [1,10,11, 28]. We observe large differences
between projects (TCPDump has 4 times the average lifetime
of Chromium). There can be multiple possible explanations
for these differences (e.g. better security protocols, general

16Due to the restrictions of the heuristic (e.g. only consider changes in
C/C++ files) the total number of CVEs with an estimated or ground truth
lifetime is 5,436.



0 1000 2000 3000 4000 5000 6000
Heuristic lifetime (days)

0.0000

0.0002

0.0004

0.0006

De
ns

ity
Exponential fit
Median
Mean

(a) Histogram for heuristic data

0 1000 2000 3000 4000 5000 6000
Ground truth lifetime (days)

0.0000

0.0005

0.0010

De
ns

ity

Exponential fit
Median
Mean

(b) Histogram for groundtruth data

0 1000 2000 3000 4000 5000 6000
Exponential theoretical quantiles

0

2000

4000

6000

He
ur

. q
ua

nt
.

(c) Q-Q plot for heuristic data

0 1000 2000 3000 4000 5000 6000
Exponential theoretical quantiles

0

2000

4000

6000

GT
 q

ua
nt

.

(d) Q-Q plot for ground truth data

Figure 4: Comparison of histograms of lifetime distributions between heuristic and ground truth data for the same CVEs. The exponential fit
to the histograms and the corresponding Q-Q plots are also provided.

development, code churn) that we further touch upon in the
following subsections. Also, we observe that the median is
generally lower than the mean. This gives an indication re-
garding the distribution of lifetimes within a project. This
issue is specifically tackled in the following subsection.

Project Lifetime
Average Median

Linux (kernel) 1,732.97 1,363.5
Firefox 1,338.58 1,082.0
Chromium 757.59 584.5
Wireshark 1,833.86 1,475.0
Php 2,872.40 2,676.0
FFmpeg 1,091.99 845.5
OpenSSL 2,601.91 2,509.0
Httpd 1,899.96 1,575.5
Tcpdump 3,168.58 3,236.0
Qemu 1,743.86 1,554.0
Postgres 2,336.56 2,140.0
Average of projects 1,943.48 1,731.0
All CVEs 1,501.47 1,078.0

Table 3: Overview of average lifetimes per project (ordered by
number of CVEs)

5.2 Distribution
Figure 5 shows the distribution of lifetimes for all CVEs,
along with an exponential fit. Upon initial visual inspection of
the histogram of Figure 5, we selected the exponential distri-
bution as a potentially good fit to the data. Then, by employing
a Q-Q plot [39] we verified that the exponential distribution
is indeed an excellent fit for lifetimes of up to around 4,200
days (Figure 6), accounting for 94% of our data. Then, the

0 1000 2000 3000 4000 5000 6000 7000
lifetime

0.0000

0.0002

0.0004

0.0006

De
ns

ity

Exponential fit
Median
Mean

Figure 5: Distribution of vulnerability lifetimes. Equally sized bins.

distribution of the empirical values is a bit denser than the
theoretical at around 5,000 days, and sparser for higher life-
times (over 6,000 days). We assess that the exponential is still
a good fit – and thus useful for calculations – for lifetimes
up to around 5,000 days (98% of our data). We expected the
existence of a cut-off point for the fit on the tail of the data
since the exponential continues generating some small – yet
non-negligible – mass for very high values (since it goes to
infinity), while the lifetimes in our empirical dataset are natu-
rally constrained by the age of the code. We then employed
the Kolmogorov-Smirnov test as described in the seminal
methodology of Clauset et al. [9] to statistically compare the
fit of the exponential to other candidate distributions, such as
the power law or the lognormal. We found the exponential to
be a statistically significant better fit. Further evidence sup-
porting the goodness of fit of the exponential can be found in
Appendix A.2.

Given the above, the distribution for the lifetimes can be
approximated by the probability density function below17:

f (x) =
1

1501.47
e−

1
1501.47 x (2)

17For most of the probability mass, except the tail (>5,000 days) as dis-
cussed above.



0 1000 2000 3000 4000 5000 6000
Exponential theoretical quantiles

0

1000

2000

3000

4000

5000

6000

Sa
m

pl
e 

qu
an

til
es

Figure 6: Q-Q Plot comparing theoretical exponential distri-
bution and our data (blue points). The fit is excellent up to
a lifetime of around 4,200 days and then gradually diverges.
We can say it remains a good fit up to a lifetime of around
5,000 days.

This distribution has an average value of 1,501.47 days
and a median (referred to as half-life in nuclear physics) of
ln2·1,501.47 = 1,040.74 days. This is the amount of time
required for half of the vulnerabilities to be fixed. Conversely,
63% of vulnerabilities are fixed before the average lifetime of
1,501.47 days. Exponential distributions also provide satisfac-
tory fits for the vulnerability lifetimes of single projects, when
considered in isolation (with small variations). This can also
be observed in the average and median values of Table 3. For
most projects (especially the ones with many data points avail-
able), the median is close to ln2 (~0.69) times the average.
According to our analysis, for all intended purposes of this
paper, the empirical distribution of lifetimes in a project can
be adequately approximated by an exponential distribution.

5.3 Trends over time

To investigate the progression of vulnerability lifetimes over
time, we grouped CVEs by their fixing year (year of their
last fixing commits, as also discussed in Section 2.2) and cal-
culated the average lifetime for each year. Figure 7 shows
how vulnerability lifetimes progressed over the years for the
dataset as a whole, as well as for Firefox, Chromium and
Linux. These were the projects that had enough CVEs (>20)
for each year to confidently assess their lifetime over an ex-
tended period. Specifically, the grey area in the plots covers
the years before the first year when at least 20 CVEs with
fixing commits were available for the project.

Overall (Figure 7a), vulnerability lifetimes show a sign of
increase over the years with some fluctuation. When consid-
ering all CVEs, their average vulnerability lifetime increases
by 42.78 days per year.

Considering the other 3 selected projects in particular, for

Chromium (Figure 7c) and Linux (Figure 7d) we can observe
clear increasing trends, whereas for Firefox (Figure 7b), vul-
nerability lifetimes are stable, even with a slight decreasing
trend. It is interesting to note that although the overall increas-
ing trends for Chromium and Linux are similar, lifetimes for
Chromium can fluctuate significantly over the years, while
the values for Linux fluctuate less. For the other projects that
do not have enough datapoints for year-by-year analysis, we
group CVEs per 2 or more years (for additional figures refer
to the full version of the paper). In total, out of the 11 projects
in our study: 3 (Chromium, Linux, httpd) have a clear and sig-
nificant (ordinary least squares linear fit factor > 0 with 95%
confidence) increasing trend; 4 (Qemu, OpenSSL, Php, Post-
gres) show an increase but with fewer data points available; 4
(Firefox, Wireshark, Tcpdump, FFmpeg) do not exhibit any
particular trend.

Does increasing vulnerability lifetimes mean that code
quality is getting worse over time? We came up with two
possible conflicting explanations for increasing vulnerability
lifetimes. The first is optimistic: we are fixing vulnerabili-
ties faster than we are introducing them, and thus, there are
less new vulnerabilities to find and the average age of those
we are fixing is increasing, as we are “catching up”. As put
forward by Corbet in 2010 [11] regarding the Linux kernel
“[a prominent kernel developer told me that] the bulk of the
holes being disclosed were ancient vulnerabilities which were
being discovered by new static analysis tools. In other words,
we are fixing security problems faster than we are creating
them”. The pessimistic explanation is that we are introducing
vulnerabilities at a similar or even greater rate than we are
fixing them, and that the average age of those that are fixed is
increasing, along with the age of the codebase. The optimistic
explanation would require a gradual change of the shape of
the distribution of lifetimes. As can be seen in Figure 8, the
distribution remains exponential, with gradually increasing
mean over time. Thus, the optimistic explanation is not sup-
ported by the empirical measurements, making the pessimistic
explanation more likely. However, deeper investigation into
the relationship between vulnerability age and code age in
general is required. We present this in the next section.

5.4 Code age

To compute the overall code age of a project at a given point
in time, we employed the following method. For each year X,
we consider the state of the repository on the 1st of July in
that year (half-way point). Subsequently, we “blame” (getting
the point in time a line was last changed) every line in the
repository. We consider the time-span between the last change
and the half-way point to be the regular code age for that line
in year X. To analyze the relation between regular code age
and fixed vulnerable code age (vulnerability lifetime), we
calculate the average code age for each year that we have
vulnerability lifetime data for, and plot the result in Figure 9



2008 2010 2012 2014 2016 2018 2020
year of fixing commit

0

500

1000

1500

2000

2500

lif
et

im
e 

in
 d

ay
s

Lifetime
Li&Paxson estimate

(a) All CVEs

2008 2010 2012 2014 2016 2018 2020
year of fixing commit

0

500

1000

1500

2000

2500

lif
et

im
e 

in
 d

ay
s

Lifetime
Li&Paxson estimate

(b) Firefox

2008 2010 2012 2014 2016 2018 2020
year of fixing commit

0

500

1000

1500

2000

2500

lif
et

im
e 

in
 d

ay
s

Insufficient data
Lifetime
Li&Paxson estimate

(c) Chromium

2008 2010 2012 2014 2016 2018 2020
year of fixing commit

0

500

1000

1500

2000

2500

lif
et

im
e 

in
 d

ay
s

Insufficient data
Lifetime
Li&Paxson estimate

(d) Linux

Figure 7: Average Lifetime trend (computed with our weighted average approach) for all CVEs, as well as for Firefox, Chromium and Linux,
in isolation. A lower bound computed similarly to Li and Paxson’s approach is included for completeness.

0 1000 2000 3000 4000 5000 6000 7000

0.0000

0.0002

0.0004

0.0006

0.0008
Exponential fit <= 2013
Exponential fit <= 2015
Exponential fit <= 2017
Exponential fit <= 2020

Figure 8: Distribution fit of lifetimes by year of fix

for Firefox, Chromium, Linux, and Httpd.
We observe a close correlation between average code age

and average vulnerability lifetime for all projects. Both quanti-
ties have an increasing trend over time for all projects, except
for Firefox, for which there is a slightly decreasing trend for
both quantities. We can make two general key observations
here. First, vulnerability lifetime is lower than regular code
age. Second, although for most projects the spread between
“vulnerable code” and “all code” appears to remain constant
over time, for some projects (e.g. Chromium – see Figure 9b),
this spread increases. These observations and their interpre-
tation carry significant insights that we discuss in Section 6.
But first, in the following subsection, we investigate whether
there is a relation between the lifetime of a vulnerability and
the type of bug that introduced it.

5.5 Types
CVE entries in the NVD are assigned a Common Weakness
Enumeration identifier (CWE) [22] that denotes the type of
error that led to the vulnerability. However, these identifiers,
in their raw form, are not suited for studies involving multiple
projects, since (a) different analysts may assign CWEs on
different depths in the CWE hierarchy18, and therefore CWEs
are not directly comparable, (b) one CWE can have multiple
top-level (“root”) CWEs, making it difficult to compare on
the root level, (c) depending on the CWE View chosen for the
root level (e.g. CWE VIEW: Research Concepts CWE-1000),
some of the CWEs in the NVD entries may not even be part
of the hierarchy.

Therefore, we created a mapping between CWE identifiers
and 6 custom top level categories (see Table 4) that covers
the most relevant research concepts. The categories are broad
enough that each CWE can be assigned to one of them, and
the number of total categories is low to allow for large enough
sample sizes within each.

Code Development Quality refers to vulnerabilities that
are introduced due to violations of standard coding practices
like infinite loops, division by zero, etc. Security Measures in-
cludes cryptographic issues as well as flaws related to authen-
tication, permission and privilege management. The Memory
Management, Input Validation and Sanitization, and Concur-

18CWE identifiers are organized in a hierarchical structure. More general
identifiers, e.g. CWE-682: Incorrect Calculation, have multiple more specific
“children”, e.g. CWE-369: Divide By Zero.



2006 2008 2010 2012 2014 2016 2018 2020
year of fixing commit

0

1000

2000

3000

4000

lif
et

im
e 

in
 d

ay
s

Lifetime
Regular code age

(a) Firefox

2010 2012 2014 2016 2018 2020
year of fixing commit

0

1000

2000

3000

4000

lif
et

im
e 

in
 d

ay
s

Lifetime
Regular code age

(b) Chromium

2010 2012 2014 2016 2018 2020
year of fixing commit

0

1000

2000

3000

4000

lif
et

im
e 

in
 d

ay
s

Lifetime
Regular code age

(c) Linux

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
year of fixing commit

0

1000

2000

3000

4000

lif
et

im
e 

in
 d

ay
s

Vul lifetime
Regular code age

(d) Httpd

Figure 9: Age of vulnerable code vs. all code, along with linear fits, for Firefox, Chromium, Linux (kernel) and Httpd. For Httpd, vulnerability
lifetimes are calculated in 4 or 5-year intervals to guarantee confidence in the estimation.

rency categories are self-explanatory. Others is the category
that includes all CWEs that could not be matched to any
of the five aforementioned categories. The exact mapping
between CWE identifiers and our categories is available in
Appendix A.1. The average vulnerability lifetime per category
is shown in Table 4.

ID Name Mean Median
5 Others 1,345.64 984.0
2 Input Validation and Sanitization 1,354.07 944.5
4 Security Measures 1,384.05 996.5
6 Concurrency 1,604.10 1,296.0
1 Memory and Resource Management 1,633.60 1,129.0
3 Code Development Quality 1,760.96 1,333.0

Table 4: Vulnerability categories and their mean and median life-
times (in days) for all CVEs

Analysis of the data for all CVEs indicates a significant19

difference in distribution, agreeing with previous results [18].
More thorough analysis, however, reveals that this can

be attributed to differences in the prevalence of different
types in different projects, rather than some deeper relation
(an instance of Simpson’s paradox). Specifically, for Linux,
Chromium, and Firefox, no significant difference can be statis-
tically observed20. As an example, the figures for Chromium

19Kruskal-Wallis-H test with p-value of 2-91e-07 and 40% of pairwise
comparisons sign. different (α = 0.05), even with Bonferroni correction.

20Kruskal-Wallis-H test with p-values 0.492 (Chromium), 0.075 (Firefox)
and 0.525 (Linux).

are given in Table 5.

ID Name Mean Median
6 Concurrency 597.43 543.0
3 Code Development Quality 647.36 700.0
2 Input Validation and Sanitization 687.92 525.0
5 Others 706.71 576.0
1 Memory and Resource Management 770.25 618.0
4 Security Measures 736.49 545.0

Table 5: Vulnerability categories of Chromium, mean and median
lifetimes in days

5.6 Case study on impact of fuzzing

To show the utility of vulnerability lifetime as a metric to
study issues with practical implications, we investigate the
effect of automated tools (esp. fuzzing tools) on vulnerabil-
ity lifetimes. Although fuzz testing in general is not a new
idea, “modern” coverage-guided fuzzing with fuzzers like
AFL(++)21, libFuzzer22 and Honggfuzz23 (syzkaller24 for the
kernel), combined with sanitizers (e.g. (K)ASan [35], MSan25,

21https://github.com/google/AFL, https://github.com/
AFLplusplus/AFLplusplus

22https://llvm.org/docs/LibFuzzer.html
23https://github.com/google/honggfuzz
24https://github.com/google/syzkaller
25https://clang.llvm.org/docs/MemorySanitizer.html

https://github.com/google/AFL
https://github.com/AFLplusplus/AFLplusplus
https://github.com/AFLplusplus/AFLplusplus
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/honggfuzz
https://github.com/google/syzkaller
https://clang.llvm.org/docs/MemorySanitizer.html


UBSan26) to expose latent bugs, started being widely used
for FOSS in around 2016 (AFL introduced to the Linux com-
munity in 201527, first syzkaller talk in 201628, OSSFuzz
launched in late 201629). One may expect a measurable im-
pact on vulnerability lifetimes by the adoption of fuzzing tools.
Before approaching this question empirically, we discuss the
theoretically expected impact on vulnerability lifetimes from
the introduction of fuzzing tools. The introduction of fuzzers
in long-lived projects would result in the discovery of some
very old bugs, and thus we would expect an initial increase
of the average lifetime of vulnerabilities for a short period of
time. Then, considering these old bugs have been removed,
we would expect continuous fuzzing to result in the discovery
of bugs relatively quickly after their introduction, resulting in
a drop in the average vulnerability lifetime. Overall, the ex-
pected behaviour would be a surge followed by a considerable
decline.

We move on to empirically approach the question. Making
the simplifying assumption that memory-related bugs are the
traditional and natural targets of fuzzing, we plot the trend
of Linux memory-related CVEs compared to Linux CVEs
that fall into other categories (categories as presented in Sec-
tion 5.5). Figure 10 shows no significant difference in the
lifetime trend for the two sets of CVEs. Also, we do not ob-
serve any behaviour consistent with our expectation. It seems
that the introduction of “modern” fuzzing tools did not have
any noticeable impact on Linux lifetimes.

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
year of fixing commit

0

500

1000

1500

2000

2500

lif
et

im
e 

in
 d

ay
s

Memory vulnerabilities
Others

Figure 10: Lifetimes of memory-related vs. all other vulnera-
bility categories for Linux.

Why would this be the case? We continue the investi-
gation by looking into the five longest-surviving CVEs in
our ground truth dataset for any project. Four of them are
Linux CVEs (CVE-2019-15291, CVE-2019-19768, CVE-
2019-11810, CVE-2019-19524), each with a lifetime of
around 5,000 days (more than 13 years). All CVEs describe

26https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.
html

27https://lwn.net/Articles/657959/
28https://github.com/google/syzkaller/blob/master/docs/

talks.md
29https://opensource.googleblog.com/2016/12/

announcing-oss-fuzz-continuous-fuzzing.html

memory-related issues. Interestingly, 2 of them (first and last)
describe issues related to USB drivers discovered by syzkaller.
Fuzzing of the USB subsystem of the kernel has a rich history.
Andrey Konovalov reported a batch of Linux USB vulner-
abilities in 201730, before reporting a new batch in 201931

upon resumption of the USB fuzzing project. Moreover, Peng
and Payer [30] (USBFuzz) used USB device emulation and
coverage-guided fuzzing to discover a number of vulnerabil-
ities in “already extensively fuzzed – versions of the Linux
kernel”, showing that their approach is complementary to
syzkaller. The progressive discovery of vulnerabilities in this
one specific subsystem of the Linux kernel showcases that
the notion of “already fuzzed” may be misleading, even for
relatively small subsystems of complex systems. The lack of
observable impact on memory-related CVE lifetimes upon
the introduction of fuzzing tools supports this assertion as
very old bugs continue to get discovered with (possibly new)
fuzzing tools years after fuzzing has started on the specific tar-
get. Our evidence suggests that fuzzing complex systems
is not a “one-off” automated task, rather a complex ever-
evolving process. A different but similar interpretation is that
the “initial increase” in lifetimes that we expected due to the
introduction of fuzzing is prolonged as new tools and tech-
niques continuously enter the arsenal of testers (e.g. consider
the new approaches to USB fuzzing referenced above).

None of the above imply that fuzzing in general, or as car-
ried out in the Linux kernel, does not significantly contribute
to improving security. Continues fuzzing finds large numbers
of bugs (e.g. >3,000 Linux bugs discovered by syzkaller and
fixed32). Most of these bugs are not assigned CVEs due to
several reasons, e.g. they are fixed before the next release of a
version or their security implications are unclear. This might
be a reason why no decrease in vulnerability lifetimes is ob-
served in our dataset, which only includes CVEs. However our
techniques are of general relevance and can be used to mea-
sure the lifetimes of other bugs (e.g. discovered by syzkaller)
as well. Furthermore, some of these bugs are not memory-
related (e.g. KCSAN33 is a sanitizer for Linux concurrency
bugs). Overall, this case study highlights the complicated
nature of fuzzing and its relation to vulnerability lifetimes.
Quantifying the impact of fuzzing in improving the security of
codebases and its impact on lifetimes is still an open problem
that needs further investigation.

6 Implications and discussion

Is software getting more secure over time? In Section 5,
we presented a number of results related to this question.

30https://www.openwall.com/lists/oss-security/2017/12/12/
7

31https://www.openwall.com/lists/oss-security/2019/08/20/
2

32https://syzkaller.appspot.com/upstream/fixed
33https://github.com/google/ktsan/wiki/KCSAN

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://lwn.net/Articles/657959/
https://github.com/google/syzkaller/blob/master/docs/talks.md
https://github.com/google/syzkaller/blob/master/docs/talks.md
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://www.openwall.com/lists/oss-security/2017/12/12/7
https://www.openwall.com/lists/oss-security/2017/12/12/7
https://www.openwall.com/lists/oss-security/2019/08/20/2
https://www.openwall.com/lists/oss-security/2019/08/20/2
https://syzkaller.appspot.com/upstream/fixed
https://github.com/google/ktsan/wiki/KCSAN


We established that there is no evidence to support that we
are introducing (and consequently fixing) significantly fewer
new vulnerabilities over time. We also made the following
observations: (a) vulnerability lifetimes are on average lower
than regular code age, and (b) for some projects this spread
increases over time.

Observation (a) shows that vulnerability-fixing has a siz-
able benefit in reducing the window of exposure to zero-day
attacks. If this were not the case (if vulnerability lifetimes
were similar or greater than regular code age), one could say
that our vulnerability-finding practices would be totally inef-
fective – fortunately this is not true.

Observation (b), that for some projects vulnerability life-
times, on average, increase slower over time compared to code
age, is more interesting. One explanation could be that we are
(introducing and) fixing an increasingly large number of new
vulnerabilities each year, in addition to a few very old ones.
Figure 8 does not support this explanation, since overall the
distribution of vulnerability lifetimes does not significantly
change and remains exponential, slowly stretching towards
higher means over time. The alternative interpretation would
be that there are parts of code that mature, i.e. we do not find
vulnerabilities affecting them anymore, and apart from these
parts we continue finding a similar ratio of new compared
to old vulnerabilities. Our data support this interpretation.
Overall, this interpretation suggests that we could be slowly
progressing towards a state of relative maturity, where vulner-
ability lifetimes become stable over time and not correlated to
code age, even if the latter is increasing. In this state, the older
parts of the codebase will be hardened, and we will be finding
vulnerabilities introduced in a possibly large, yet bounded,
time period. One could challenge this interpretation with the
argument that vulnerabilities in older parts of the code are
not found because nobody is looking for them. Although new
parts of code may come under additional manual scrutiny, we
do not believe that the vulnerability hunting process is differs
drastically between old and even-older parts of the code. It
would be beneficial to repeat the measurement some years
from now, in order to see whether the predicted behavior of
a stop to the constant increase of vulnerability lifetimes will
hold for the projects under question.

Overall, even though we may not be decreasing the
number of vulnerabilities in a given codebase, there
are indications that we could be making progress to-
wards achieving a notion of maturity, where vulnera-
bilities will be mostly absent from code older than a
specific point in the past.

Are vulnerabilities (in a given project) equal? When test-
ing for differences in vulnerability lifetimes for all CVEs (all
projects), we found that there exist statistically significant dif-
ferences, even when considering our custom categories. This

result is in line with the observations of Li and Paxson [18].
They stopped their investigation at this point, however our
dataset allowed us to explore further and investigate whether
the relative frequency of different vulnerability types in dif-
ferent projects is the cause of the observation above. Indeed,
we found no statistically significant evidence supporting a re-
lationship between the lifetime of a vulnerability and its type,
within a project. For example, Category 3 has the highest
average lifetime in Table 4 (1,760 days for all CVEs) but by
far the lowest in Table 8 (752 days for Firefox). We attribute
differences observed in previous studies to differences in the
ratios of different types in different projects. Therefore, the
notion that some vulnerability categories are in general harder
to find than others (e.g. memory bugs are harder to find than
input validation bugs), is not supported by our findings.

Different vulnerability categories seem to be equally
difficult to find (at least post release); overall, our
results are consistent with the view that all vulnerabil-
ities in a project are equal, and their order of discovery
is random.

Can we compare? Meaningful quantitative security metrics
are notoriously difficult to arrive at [38]. Metrics that can
meaningfully be used to compare different products/projects
are especially rare. Simply comparing vulnerability lifetimes
or trends in lifetimes between projects is not suitable, as they
can be heavily correlated to regular code age.

We put forward the hypothesis that the following two
metrics may be helpful for comparative studies: (a)
the spread between overall code age and vulnerability
lifetime, or alternatively the ratio between average
vulnerability lifetime and code age; (b) the rate of
change (increase or decrease) of the spread between
overall code age and vulnerability lifetime.

Further investigation of these metrics as comparison instru-
ments is a very interesting avenue for future research.
How much fuzzing is enough? Traditionally, security re-
searchers tend to focus on new, relatively less tested parts
of the code to test for vulnerabilities. Recently, Zhu and
Böhme [42] came to the conclusion that with limited re-
sources, fuzzing code that has recently changed is the best
vulnerability discovery strategy. Our results support this state-
ment to an extent, in the sense that the distribution of vulner-
ability lifetimes can be described by a decreasing function
(exponential – see Figure 5). However, a significant number
of vulnerabilities have large lifetimes and fuzzers keep dis-
covering very old vulnerabilities for years (see Section 5.6).
Taking into account the well-known asymmetries of computer
security, finding these vulnerabilities that potentially impact
many legacy systems, is also important. Furthermore, further



focused research is required in order to better understand the
impact of fuzzing in improving the security of codebases and
its impact on vulnerability lifetimes.

Overall, fuzzing old code seems to still produce re-
sults even for “extensively tested” targets. Further
research is needed to understand and quantify the im-
pact of fuzzing and its relation to lifetimes.

7 Threats to validity

Dataset. The data in vulnerability databases often experience
bias from several sources [7].
– Completeness. Although the NVD is one of the largest col-
lections of software vulnerabilities, it can not be considered
complete, since many vulnerabilities may never get a CVE.
Further research is required to investigate the lifetime of those
vulnerabilities. Furthermore, although we strove to map as
many CVEs to their fixing commits as possible, our approach
is not able to identify a fixing commit for every single CVE
affecting a program. However, the dataset we gathered is big
and complete enough to be representative, and we do not
expect our results on vulnerability lifetimes and their charac-
teristics to be significantly influenced by some missing data
points.
– Correctness. Entries in the NVD are manually curated and
analyzed, but might still include errors. Additionally, mistakes
in the commit message when including the bug ID or a CVE-
ID can lead to incorrect mappings. We corrected these errors
during our data cleaning process, however, some errors may
have evaded detection. We expect these to be few and to not
affect our general observations.
– Generalization. Although we do not claim validity of our
results for other projects, apart from the 11 we included in
our dataset, we believe that the selected projects are a large
representative sample and the insights gained from our results
are, to an extent, of general significance.
Independence. Some of our arguments in the Results section
rely on the implied assumption that vulnerability lifetimes
are independent. It has been shown that some vulnerability
discovery events can be dependent [29], either due to a new
class of vulnerabilities being discovered, a new tool being
made available, or a new area of code coming under scrutiny.
These dependencies manifest themselves as small bursts in
the vulnerability discovery rate and are a particular problem
to vulnerability discovery models that try to model the time
between discoveries. It is difficult to imagine (let alone test)
how such dependencies would affect the lifetimes of vulner-
abilities, especially in a large and diverse dataset like ours.
Also, our empirical results do not indicate the existence of any
kind of dependency regarding vulnerability lifetimes. There-
fore, we consider the independence of vulnerability lifetimes
to be a reasonable assumption. Some points in the Discus-

sion section also imply an assumption of independence of
discovery events. Again, small bursts of discoveries may exist
due to dependent discoveries, however they do not affect the
arguments being made, which describe large-scale behaviors.
Heuristic error. Our main findings are consistent over dif-
ferent projects and over time. Therefore, we do not believe
the error of our lifetime-estimation heuristic (as discussed in
Section 4.2) to affect their validity.

8 Conclusion

In this paper we studied the lifetimes of vulnerabilities. A
vulnerability’s lifetime is the amount of time it remains in
the codebase of a software project before it is discovered and
fixed. Via a rigorous process we showed that it is possible to
accurately compute the metric (lifetime) automatically when
enough data points are available, via a heuristic code analysis
technique. Our technique is of general relevance and can be
used to study lifetimes of bugs and vulnerabilities for a wide
variety of software. We also showed that measurements using
the metric can have theoretical and practical implications.
Thus, we believe vulnerability lifetime to be a promising
software security metric.

Further research is required to better understand how the
metric can be used to quantify the impact of automated tools
on the security of codebases, as well as how vulnerabilities
not assigned CVEs affect the results of the measurement.
Moreover, further investigation of the theoretical implications
of the metric w.r.t. vulnerability discovery models and soft-
ware reliability models in general, could provide interesting
insights.

Acknowledgments

We would like to thank our shepherd Zhiyun Qian and the
anonymous reviewers for helping us significantly improve the
paper. This work has been co-funded by the German Federal
Ministry of Education and Research and the Hessen State
Ministry for Higher Education, Research and the Arts within
their joint support of the National Research Center for Applied
Cybersecurity ATHENE.

References

[1] Nikolaos Alexopoulos, Sheikh Mahbub Habib, Steffen
Schulz, and Max Mühlhäuser. The tip of the iceberg:
On the merits of finding security bugs. ACM Trans. Priv.
Secur., 24(1), September 2020.

[2] Omar H. Alhazmi and Yashwant K. Malaiya. Modeling
the vulnerability discovery process. In 16th Interna-
tional Symposium on Software Reliability Engineering
(ISSRE 2005), 8-11 November 2005, Chicago, IL, USA,
pages 129–138. IEEE Computer Society, 2005.



[3] Omar H Alhazmi and Yashwant K Malaiya. Quantitative
vulnerability assessment of systems software. In Annual
Reliability and Maintainability Symposium, 2005. Pro-
ceedings., pages 615–620. IEEE, 2005.

[4] Omar H. Alhazmi and Yashwant K. Malaiya. Measur-
ing and enhancing prediction capabilities of vulnerabil-
ity discovery models for apache and IIS HTTP servers.
In 17th International Symposium on Software Reliabil-
ity Engineering (ISSRE 2006), 7-10 November 2006,
Raleigh, North Carolina, USA, pages 343–352. IEEE
Computer Society, 2006.

[5] Leyla Bilge and Tudor Dumitras. Before we knew it: an
empirical study of zero-day attacks in the real world. In
Ting Yu, George Danezis, and Virgil D. Gligor, editors,
the ACM Conference on Computer and Communications
Security, CCS’12, Raleigh, NC, USA, October 16-18,
2012, pages 833–844. ACM, 2012.

[6] Canonical. Ubuntu cve tracker. https://git.
launchpad.net/ubuntu-cve-tracker. Accessed:
2020-03-18.

[7] Steve Christey and Brian Martin. Buying into
the bias: Why vulnerability statistics suck, 2013.
Presentation at BlackHat, Las Vegas, USA, slides
available at https://media.blackhat.com/us-13/
US-13-Martin-Buying-Into-The-Bias-Why-\
Vulnerability-Statistics-Suck-Slides.pdf.

[8] Sandy Clark, Stefan Frei, Matt Blaze, and Jonathan
Smith. Familiarity breeds contempt: The honeymoon
effect and the role of legacy code in zero-day vulnera-
bilities. In Proceedings of the 26th annual computer
security applications conference, pages 251–260. ACM,
2010.

[9] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ
Newman. Power-law distributions in empirical data.
SIAM review, 51(4):661–703, 2009.

[10] Kees Cook. Security bug lifetime. https:
//outflux.net/blog/archives/2016/10/18/
security-bug-lifetime/, 2016.

[11] Jonathan Corbet. Kernel vulnerabilities: old or new?
https://lwn.net/Articles/410606/, 2010.

[12] Debian. Debian security tracker. https:
//salsa.debian.org/security-tracker-team/
security-tracker/-/tree/master/data/CVE.

[13] Alexandre Dulaunoy. Cve-search. https://github.
com/cve-search/cve-search, Jan 2020.

[14] Stefan Frei. Security econometrics: The dynamics of
(in) security. PhD thesis, ETH Zurich, 2009.

[15] HyunChul Joh, Jinyoo Kim, and Yashwant K. Malaiya.
Vulnerability discovery modeling using weibull distri-
bution. In 19th International Symposium on Software
Reliability Engineering (ISSRE 2008), 11-14 November
2008, Seattle/Redmond, WA, USA, pages 299–300. IEEE
Computer Society, 2008.

[16] Jinyoo Kim, Yashwant K. Malaiya, and Indrakshi Ray.
Vulnerability discovery in multi-version software sys-
tems. In Tenth IEEE International Symposium on High
Assurance Systems Engineering (HASE 2007), Novem-
ber 14-16, 2007, Dallas, Texas, USA, pages 141–148.
IEEE Computer Society, 2007.

[17] Brian Krebs. Why counting flaws is flawed.
https://krebsonsecurity.com/2010/11/
why-counting-flaws-is-flawed/, 2010.

[18] Frank Li and Vern Paxson. A large-scale empirical
study of security patches. In Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu, ed-
itors, Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017,
pages 2201–2215. ACM, 2017.

[19] Nicholas Luedtke. linux kernel cves. https://github.
com/nluedtke/linux_kernel_cves.

[20] Andrew Meneely, Harshavardhan Srinivasan, Ayemi
Musa, Alberto Rodriguez Tejeda, Matthew Mokary, and
Brian Spates. When a patch goes bad: Exploring the
properties of vulnerability-contributing commits. In
2013 ACM / IEEE International Symposium on Em-
pirical Software Engineering and Measurement, Balti-
more, Maryland, USA, October 10-11, 2013, pages 65–
74, 2013.

[21] Andy Meneely. Vulnerability history project. https://
github.com/VulnerabilityHistoryProject. Ac-
cessed: 2020-03-18.

[22] MITRE. Common weakness enumeration. https:
//cwe.mitre.org/data/definitions/699.html,
2020.

[23] Antonio Nappa, Richard Johnson, Leyla Bilge, Juan Ca-
ballero, and Tudor Dumitras. The attack of the clones:
A study of the impact of shared code on vulnerability
patching. In 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015,
pages 692–708, 2015.

[24] Viet Hung Nguyen and Fabio Massacci. The
(un)reliability of NVD vulnerable versions data: an em-
pirical experiment on google chrome vulnerabilities.
In Kefei Chen, Qi Xie, Weidong Qiu, Ninghui Li, and

https://git.launchpad.net/ubuntu-cve-tracker
https://git.launchpad.net/ubuntu-cve-tracker
https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-\Vulnerability-Statistics-Suck-Slides.pdf
https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-\Vulnerability-Statistics-Suck-Slides.pdf
https://media.blackhat.com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-\Vulnerability-Statistics-Suck-Slides.pdf
https://outflux.net/blog/archives/2016/10/18/security-bug-lifetime/
https://outflux.net/blog/archives/2016/10/18/security-bug-lifetime/
https://outflux.net/blog/archives/2016/10/18/security-bug-lifetime/
https://lwn.net/Articles/410606/
https://salsa.debian.org/security-tracker-team/security-tracker/-/tree/master/data/CVE
https://salsa.debian.org/security-tracker-team/security-tracker/-/tree/master/data/CVE
https://salsa.debian.org/security-tracker-team/security-tracker/-/tree/master/data/CVE
https://github.com/cve-search/cve-search
https://github.com/cve-search/cve-search
https://krebsonsecurity.com/2010/11/why-counting-flaws-is-flawed/
https://krebsonsecurity.com/2010/11/why-counting-flaws-is-flawed/
https://github.com/nluedtke/linux_kernel_cves
https://github.com/nluedtke/linux_kernel_cves
https://github.com/VulnerabilityHistoryProject
https://github.com/VulnerabilityHistoryProject
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html


Wen-Guey Tzeng, editors, 8th ACM Symposium on Infor-
mation, Computer and Communications Security, ASIA
CCS ’13, Hangzhou, China - May 08 - 10, 2013, pages
493–498. ACM, 2013.

[25] U.S. National Institute of Standards and Technology.
National vulnerability database. https://nvd.nist.
gov/home.

[26] Andy Ozment. Software security growth modeling: Ex-
amining vulnerabilities with reliability growth models.
In Dieter Gollmann, Fabio Massacci, and Artsiom Yaut-
siukhin, editors, Quality of Protection - Security Mea-
surements and Metrics, volume 23 of Advances in Infor-
mation Security, pages 25–36. Springer, 2006.

[27] Andy Ozment. Improving vulnerability discovery mod-
els. In Günter Karjoth and Ketil Stølen, editors, Pro-
ceedings of the 3th ACM Workshop on Quality of Pro-
tection, QoP 2007, Alexandria, VA, USA, October 29,
2007, pages 6–11. ACM, 2007.

[28] Andy Ozment and Stuart E. Schechter. Milk or wine:
Does software security improve with age? In Angelos D.
Keromytis, editor, Proceedings of the 15th USENIX Se-
curity Symposium, Vancouver, BC, Canada, July 31 -
August 4, 2006. USENIX Association, 2006.

[29] James Andrew Ozment. Vulnerability discovery & soft-
ware security. PhD thesis, University of Cambridge,
2007.

[30] Hui Peng and Mathias Payer. Usbfuzz: A framework
for fuzzing USB drivers by device emulation. In Srdjan
Capkun and Franziska Roesner, editors, 29th USENIX
Security Symposium, USENIX Security 2020, August
12-14, 2020, pages 2559–2575. USENIX Association,
2020.

[31] Henning Perl, Sergej Dechand, Matthew Smith, Daniel
Arp, Fabian Yamaguchi, Konrad Rieck, Sascha Fahl,
and Yasemin Acar. Vccfinder: Finding potential vulner-
abilities in open-source projects to assist code audits.
In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 426–
437, 2015.

[32] Valentina Piantadosi, Simone Scalabrino, and Rocco
Oliveto. Fixing of security vulnerabilities in open
source projects: A case study of apache HTTP server
and apache tomcat. In 12th IEEE Conference on Soft-
ware Testing, Validation and Verification, ICST 2019,
Xi’an, China, April 22-27, 2019, pages 68–78. IEEE,
2019.

[33] Eric Rescorla. Is finding security holes a good idea?
IEEE Secur. Priv., 3(1):14–19, 2005.

[34] B Schneier. Cryptogram september 2000-full disclosure
and the window of exposure. https://www.schneier.
com/crypto-gram/archives/2000/0915.html,
2000.

[35] Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. Addresssanitizer: A
fast address sanity checker. In Gernot Heiser and Wil-
son C. Hsieh, editors, 2012 USENIX Annual Technical
Conference, Boston, MA, USA, June 13-15, 2012, pages
309–318. USENIX Association, 2012.

[36] Muhammad Shahzad, Muhammad Zubair Shafiq, and
Alex X. Liu. A large scale exploratory analysis of soft-
ware vulnerability life cycles. In Martin Glinz, Gail C.
Murphy, and Mauro Pezzè, editors, 34th International
Conference on Software Engineering, ICSE 2012, June
2-9, 2012, Zurich, Switzerland, pages 771–781. IEEE
Computer Society, 2012.

[37] Lin Tan, Chen Liu, Zhenmin Li, Xuanhui Wang,
Yuanyuan Zhou, and ChengXiang Zhai. Bug charac-
teristics in open source software. Empirical Software
Engineering, 19(6):1665–1705, 2014.

[38] Vilhelm Verendel. Quantified security is a weak hy-
pothesis: a critical survey of results and assumptions. In
Anil Somayaji and Richard Ford, editors, Proceedings of
the 2009 Workshop on New Security Paradigms, Oxford,
United Kingdom, September 8-11, 2009, pages 37–50.
ACM, 2009.

[39] Martin B Wilk and Ram Gnanadesikan. Probability
plotting methods for the analysis for the analysis of data.
Biometrika, 55(1):1–17, 1968.

[40] Sung-Whan Woo, Omar H. Alhazmi, and Yashwant K.
Malaiya. Assessing vulnerabilities in apache and IIS
HTTP servers. In Second International Symposium on
Dependable Autonomic and Secure Computing (DASC
2006), 29 September - 1 October 2006, Indianapolis,
Indiana, USA, pages 103–110. IEEE Computer Society,
2006.

[41] Limin Yang, Xiangxue Li, and Yu Yu. Vuldigger: A just-
in-time and cost-aware tool for digging vulnerability-
contributing changes. In GLOBECOM 2017-2017 IEEE
Global Communications Conference, pages 1–7. IEEE,
2017.

[42] Xiaogang Zhu and Marcel Böhme. Regression greybox
fuzzing. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security,
CCS 2021 (to appear), 2021.

https://nvd.nist.gov/home
https://nvd.nist.gov/home
https://www.schneier.com/crypto-gram/archives/2000/0915.html
https://www.schneier.com/crypto-gram/archives/2000/0915.html


A Appendix

A.1 Vulnerability categories
Mappings to top-level categories
Below are the mappings from CWEs to our own top level
categories:
1. Memory and Resource Management
2. Input Validation and Sanitization
3. Code Development Quality
4. Security Measures
5. Others
6. Concurrency
mappings = {CWE-20: 2, CWE-189: 4, CWE-119: 1, CWE-125: 1, CWE-
399: 1, CWE-NVD-Other: 5, CWE-200: 4, CWE-476: 1, CWE-264: 4, CWE-
416: 1, CWE-835: 3, CWE-NVD-noinfo: NaN, CWE-362: 6, CWE-400: 1,
CWE-787: 1, CWE-772: 1, CWE-310: 4, CWE-190: 1, CWE-74: 2, CWE-
17: 3, CWE-284: 4, CWE-415: 1, CWE-369: 3, CWE-19: 5, CWE-834: 3,
CWE-79: 4, CWE-754: 5, CWE-674: 3, CWE-120: 1, CWE-94: 2, CWE-
388: 5, CWE-269: 4, CWE-254: 4, CWE-129: 2, CWE-287: 4, CWE-617: 3,
CWE-276: 4, CWE-404: 1, CWE-134: 5, CWE-862: 4, CWE-320: 4, CWE-
89: 2, CWE-347: 4, CWE-682: 3, CWE-16: 5, CWE-665: 5, CWE-755: 5,
CWE-732: 4, CWE-311: 4, CWE-770: 1, CWE-252: 5, CWE-534: 5, CWE-
704: 5, CWE-22: 2, CWE-532: 5, CWE-193: 3, CWE-843: 5, CWE-391: 5,
CWE-191: 1, CWE-59: 2, CWE-763: 1, CWE-358: 4, CWE-285: 4, CWE-
863: 4, CWE-77: 2, CWE-327: 4, CWE-330: 5, CWE-295: 5, CWE-352: 5,
CWE-92: 4, CWE-664: 1, CWE-93: 2, CWE-275: 4, CWE-434: 5, CWE-
707: 2, CWE-668: 4, CWE-361: 6, CWE-319: 4, CWE-255: 4, CWE-824:
1, CWE-1187: 1, CWE-426: 4, CWE-417: 5, CWE-427: 5, CWE-610: 5,
CWE-522: 4, CWE-345: 5, CWE-354: 5, CWE-91: 2, CWE-918: 5, CWE-
922: 4, CWE-706: 5, CWE-538: 4, CWE-290: 4, CWE-601: 4, CWE-346: 5,
CWE-502: 2, CWE-1021: 5, CWE-78: 2, CWE-199: 5, CWE-829: 5, CWE-
281: 4, CWE-203: 4, CWE-401: 1, CWE-908: 1, CWE-667: 1, CWE-209: 4,
CWE-88: 2, CWE-459: 1, CWE-326: 4, CWE-270: 4, CWE-331: 5, CWE-
122: 1, CWE-367: 6, CWE-909: 1, CWE-552: 4, CWE-436: 5, CWE-131: 1,
CWE-672: 1, CWE-271: 4, CWE-681: 3, CWE-212: 4}

A.2 Lifetime Distribution
Kolmogorov-Smirnov tests. We list the results of the com-
parison using the seminal methodology of Clauset et al. [9] in
Table 6. The exponential distribution is a significantly better
fit than other candidate distributions.

Distribution R
powerlaw 9203.49
lognormal 506.33
truncated power law 5505.75
lognormal positive 506.33

Table 6: Comparison of distribution fits with exponential.
Positive R-values mean that the exponential is a better fit. All
comparisons are at a significance level of at least 99%.

Comparative probability table Table 7 is a comparative
probability table to numerically convey the goodness-of-fit of
the exponential distribution and its usefulness in calculations.

Lifetime Theoretical CDF Empirical CDF
188 0.1171 0.1
376 0.2210 0.2
562 0.3117 0.3
791 0.4090 0.4
1,081 0.5128 0.5
1,436 0.6154 0.6
1,927 0.7226 0.7
2,574 0.8197 0.8
3,520 0.9040 0.9

Table 7: Numerical comparison of empirical and theoretical
CDF. Values are chosen as the quantiles of the empirical data.
The empirical distribution does not deviate more than 2.5
percentage points from the theoretical one.

A.3 Vulnerability types per project

For completeness, we present the average and median life-
times per vulnerability category for Firefox (Table 8) and the
Linux kernel (9).

ID Name Mean Median
3 Code Development Quality 714.93 459.0
5 Others 1,116.22 977.0
6 Concurrency 1,170.27 1,137.0
4 Security Measures 1,284.52 1,139.0
1 Memory and Resource Management 1,303.23 954.5
2 Input Validation and Sanitization 1,409.22 1,149.5

Table 8: Vulnerability categories for Firefox, mean and me-
dian lifetime in days

ID Name Mean Median
2 Input Validation and Sanitization 1,534.54 1,291.0
4 Security Measures 1,660.90 1,292.0
5 Others 1,681.83 1,166.0
1 Memory and Resource Management 1,756.77 1,390.5
3 Code Development Quality 1,858.60 1,517.5
6 Concurrency 1,904.62 1,663.5

Table 9: Vulnerability categories for Linux, mean and median
lifetime in days


	Introduction
	Related work and background
	Related work on vulnerability measurements
	Vulnerability lifetimes in version control systems

	Dataset creation
	Linking CVEs to their VCCs
	Included projects
	Linking CVEs to their fixing commits

	Lifetime estimation
	Lifetime estimation in previous work
	Our approach

	Results
	General
	Distribution
	Trends over time
	Code age
	Types
	Case study on impact of fuzzing

	Implications and discussion
	Threats to validity
	Conclusion
	Appendix
	Vulnerability categories
	Lifetime Distribution
	Vulnerability types per project


